SF 298 MASTER, COPY .

KEEP THIS COPY FOR REPRODUCTION PURPOSES

) REPORT DOCUMENTATION PAGE

Form Approved
OMB NO. 0704-0188

Public reccring burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and compieting and reviewing the collection of information. Send comment r

egarding this burden estimates or any other aspect of this

collecticn cf information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefterson
Davis Hignway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

July 9, 1998

3. REPORT TYPE AND DATES COVERED
Final report 5/15/95 - 5/14/98

4. TITLE AND SUBTITLE ' '
Mechanisms for Scalable Object Sharing in MIMD
Multiprocessing Systems

6. AUTHOR(S)

Jamnes H. Anderson

5. FUNDING NUMBERS

DAAH04-95-1-0323

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)
University of North Carolina .

Department of Camputer Science
CB #3175, Sitterson Hall
Chapel Hill, NC 27599-3175

8. PERFORMING ORGANIZATION
REPORT NUMBER .

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Office
P.O. Box 12211

Research Triangle Park, NC 27709-2211

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

ARo IH162.171<MA-YIP

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this r?ogt are those of the author(s) and should not be construed as
ecision, unless so designated by other documentation.

an official Department of the Army position, policy or

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

In this project, object-sharing schemes for both real-time and non-real-

investigated. A particular focus has been uniprocessor and shared-

time concurrent systems have been
memory multiprocessor systems with proces-

sors that are multiprogrammed (many processes executing on the same processor). Much of the work in this

project has been concerned with lock-free and wait-free shared o
are not lock-based, and therefore are immune to performance pr.
multiprogrammed systems. A variety of new algorithmic techni
jects have been developed and tested in this project. In additio

bject implementations. Such implementations
oblems associated with process preemptions in
ques for efficiently implementing concurrent ob-
n, research has been conducted on schedulability

tests for use in real-time systems in which the proposed object-sharing techniques are used.

14. SUBJECT TERMS

lock-free, wait-free, objects, real-time, databases

15. NUMBER IF PAGES
6

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

OR REPORT
UNCLASSIFIED

OF THIS PAGE
UNCLASSIFIED

OF ABSTRACT

UNCLASSIFIED

UL

NSN 7540-01-280-5500

Standard Earm 202 (Bay .20\

20. LIMITATION OF ABSTRACT




REPORT DOCUMENTATION PAGE (SF298)
(Continuation Sheet)

Mechanisms for Scalable Object Sharing in MIMD
Multiprocessing Systems

Final Progress Report
James H. Anderson
July 1998 .
U.S. Army Research Office
Grant Number DA AH04-95-1-0323
Department of Computer Science
The University of North Carolina at Chapel Hill
Campus Box 3175
356 Sitterson Hall
Chapel Hill, North Carolina 27599-3175

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE
THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL
- DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO

DESIGNATED BY OTHER DOCUMENTATION.

150 82218661

Enclosure 2




REPORT DOCUMENTATION PAGE (SF298)
(Continuation Sheet)

Problem Studied

In this project, object-sharing schemes for both real-time and non-real-time concurrent systems have
been investigated. A particular focus has been uniprocessor and shared-memory multiprocessor sys-
tems with processors that are multiprogrammed. In multiprogrammed systems, several processes may
execute on the same processor. Processes on the same processor are scheduled for execution either
by priority or by allocating a scheduling quantum. One of the main reasons for adopting a multipro-
grammed execution model is that it enables problems to be solved without static constraints on the
number of processes that may be employed. One price to be paid for this flexibility is having to deal
with frequent process delays due to preemptions.

~ Much of the work in this project has been concerned with lock-free and wait-free shared object
implementations. As explained in the original proposal and in previous interim reports, such imple-
mentations are not lock-based, and therefore are immune to performance problems associated with
process preemptions in multiprogrammed systems. Most of the research conducted in this project has
focused on two main goals: (i) to develop efficient algorithmic techniques for implementing concurrent
objects, and (ii) to determine how to account for object-sharing overheads that arise when using such
techniques in real-time schedulability tests.

Summary of Results

In most conventional wait-free and lock-free shared object implementations, performance does not scale
well with an increase in either the number of processes sharing the object, or the size of the object.
To deal with the former problem, we developed object implementations that incorporate lock-based
synchronization techniques to limit the number of processes that can concurrently access an object [1].
Performance studies conducted by us have shown that, in multiprogrammed systems, the use of such
techniques results in performance that is better than that of pure wait-free objects. To deal with the
problem of implementing large objects, we developed wait-free and lock-free object constructions in
which the state of the object is fragmented into smaller pieces that can be updated and managed more
efficiently [15]. Performance studies conducted by us on a KSR-1 multiprocessor have shown that, for
many common objects, these implementations perform significantly better than previous ones.

Our work on real-time object sharing has focused both on scheduling conditions for real-time tasks
that share objects, and on algorithms for implementing such objects. For real-time applications on
uniprocessors, we have shown through work on task scheduling that lock-free objects often outperform
conventional lock-based schemes by a substantial margin [2,5,11,16]. The good performance of lock-
free objects in this context is primarily due to the fact that they avoid priority inversions with no kernel
support for object sharing (in contrast to lock-based schemes) and with low algorithmic overhead (for
most common objects). We have validated these claims both formally, based on scheduling models,
and experimentally, based on research involving a desktop v1deoconferencmg system

We have also shown that it is possible to optimize wait-free algorithms in real-time multiproces-
sor systems by exploiting the inherent synchrony that exists in such systems [5,7,8,10,13]. We have
evaluated the performance of these optimized wait-free implementations by conducting a variety of
simulation experiments and by performing stress tests on a four-processor SGI Origin. These exper-
iments indicate that wait-free objects implemented using the proposed techniques outperform other
object-sharing schemes by a wide margin and lead to better schedulability in real-time systems.

We have also initiated new work on memory-resident real-time databases (RTDBs) [3,4,9,14].
RTDBs differ from conventional database systems in that transactions can have soft, firm, or hard
deadlines. In most existing RTDBs, soft or firm deadlines are supported by modifying conventional
database protocols to provide preferential treatment to high-priority transactions. In such systems,
best-effort scheduling protocols are employed to minimize the number of transactions that miss their
deadlines. In many military applications, however, certain critical transactions must be guaranteed to

Enclosure 2




REPORT DOCUMENTATION PAGE (SF298)
(Continuation Sheet)

satisfy hard real-time constraints. For example, in an air defense system designed to neutralize enemy
ballistic missiles, database updates may be triggered to track and identify potential threats and to
issue appropriate counterstrikes; such updates must complete by their deadlines. Our work on RTDBs
has focused on hard-deadline uniprocessor and multiprocessor systems. Our approach is to implement
such transactions using highly-optimized lock-free and wait-free algorithms that execute at the user
level. Since no underlying system support is needed for transactions, this allows RTDB functionality
to be achieved in embedded applications without complicated protocols for avoiding priority inversion
and deadlock, for supporting mode changes, and for handling transaction abort/recovery.

Publications
Journal Papers.

(1] J. Anderson and M. Moir, “Using Local-Spin k-Exclusion Algorithms to Improve Wait-Free Object
Implementations”, Distributed Computing, Volume 11, Number 1, pages 1-20, December 1997.

[2] J. Anderson, S. Ramamurthy, and K. Jeffay, “Real-Time Computing with Lock-Free Shared Ob-
jects”, ACM Transactions on Computer Systems, Volume 15, Number 2, pages 134-165, May 1997.

Book Chapters.

[3] J. Anderson, R. Jain, and S. Ramamurthy, “Implementing Hard Real-Time Transactions on Mul-
tiprocessors”, in Real-Time Database and Information Systems: Research Advances, Azer Bestavros

and Victor Fay-Wolfe (eds.), Kluwer Academic Publishers, Norwell, Massachusetts, pages 247-260,
September 1997.

[4] J. Anderson, S. Ramamurthy, M. Moir, and K. Jeffay, “Lock-Free Transactions for Real-Time
Systems”, in Real-Time Database Systems: Issues and Applications, A. Bestavros, K.J. Lin, and S.H.
Son, (eds.), Kluwer Academic Publishers, Norwell, Massachusetts, pages 215-234, May 1997.

Conference Papers.

[5] J. Anderson, R. Jain, and K. Jeffay, “Efficient Object Sharing in Quantum-Based Real-Time
Systems”, submitted to the 19th IEEE Real-Time Systems Symposium, 23 pages, May 1998.

[6] K. Jeffay, F. Donelson Smith, A. Moorthy, and J. Anderson, “Proportional Share Scheduling
of Operating System Services for Real-Time Applications”, ‘submitted to the 19th IEEE Real-Time
Systems Symposium, 24 pages, May 1998.

[7] J. Anderson, R. Jain, and D. Oft, “Wait-Free Synchronization in Quantum-Based Multipro-

grammed Systems”, to be presented at the 12th International Symposium on Distributed Computing,
21 pages, September 1998.

[8] J. Anderson, R. Jain, and S. Ramamurthy, “Wait-Free Object-Sharing Schemes for Real-Time
Uniprocessors and Multiprocessors”, Proceedings of the 18th IEEE Real-Time Systems Symposium,
IEEE Computer Society Press, pages 111-122, December 1997.

(9] J. Anderson, R. Jain, and S. Ramamurthy, “Implementing Hard Real-Time Transactions on Multi-
processors”, Proceedings of the Second International Workshop on Real-Time Databases, pages 247-260,

Enclosure 2



REPORT DOCUMENTATION PAGE (SF298)
(Continuation Sheet)

September 1997.

(10] J. Anderson, S. Ramamurthy, and R. Jain, “Implementing Wait-Free Objects on Priority-Based
Systems”, Proceedings of the 16th Annual ACM Symposium on Principles of Distributed Computing,
ACM, New York, pages 229-238, August 1997.

[11] J. Anderson and S. Ramamurthy, “A Framework for Implementing Objects and Scheduling Tasks
in Lock-Free Real-Time Systems”, Proceedings of the 17th IEEE Real-Time Systems Symposium, IEEE
Computer Society Press, pp. 94-105, December 1996.

~ [12] Mark Moir and Juan Garay, “Fast, Long-Lived Renaming Improved and Simplified”, Proceedings
of the 10th International Workshop on Distributed Algorithms, Lecture Notes in Computer Science
1151, Springer-Verlag, pp. 287-303, October 1996.

[13] S. Ramamurthy, M. Moir, and J. Anderson, “Real-Time Object Sharing with Minimal System
Support”, Proceedings of the 15th Annual ACM Symposium on Principles of Distributed Computing,
ACM, New York, pp. 233-242, May 1996.

[14] J. Anderson, S. Ramamurthy, M. Moir, and K. Jeffay, “Lock-Free Transactions for Real-Time
Systems”, Proceedings of the First International Workshop on Real-Time Databases: Issues and Ap-
plications, pp. 107-114, March 1996.

[15] J. Anderson and M. Moir, “Universal Constructions for Large Objects”, Proceedings of the Ninth
International Workshop on Distributed Algorithms, Lecture Notes in Computer Science 972, Springer-
Verlag, pages 168-182, September 1995.

[16] J. Anderson, S. Ramamurthy, and K. Jeffay “Real-Time Computing with Lock-Free Shared Ob-
jects (Extended Abstract)”, Proceedings of the 16th IEEE Real-Time Systems Symposium, IEEE Com-
puter Society Press, pages 28-37, December 1995.

Participating Scientific Personnel
Faculty.

James H. Anderson, P,I’ Associate Professor.
Graduate St;denté.‘ ’

Rohit Jain (partially funded by other sources).
Mark Moir (partially funded by other sources).
Srikanth Ramamurthy.

Honors/Awards/Degrees.
Alfred P. Sloan Research Fellowship, February 1996, Prof. Anderson.

Ph.D. awarded, August 1996, Mark Moir. Dissertation title: Efficient Object Sharing in Shared-
Memory Multiprocessors.




REPORT DOCUMENTATION PAGE (SF298)
(Continuation Sheet)

Ph.D. awarded, December 1997, Srikanth Ramamurthy. Dissertation title: A Lock-Free Approach to
Object Sharing in Real-Time Systems.

M.S. awarded, May 1998, Rohit Jain.

Report of Inventions (by Title Only)

Wait-free algorithms for implementing large shared objects.
Scalable shared object algorithms for large multiprogramrhed systéms.

Algorithms for implementing lock-free transactions on priority-scheduled real-time uniprocessor sys-
tems.

Algorithms for implementing wait-free objects on priority- and quantum-scheduled uniprocessor and
multiprocessor systems.

Algorithms for implementing wait-free transactions on priority-scheduled real-time multiprocessor sys-
tems.

Scheduling conditions for lock-free, real-time uniprocessor systems.

Scheduling conditions for wait-free, real-time uniprocessor and multiprocessor systems.

Fncloeura 2 2




